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Complex dynamics in multispecies communities
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SUMMARY

Communities of living organisms have potentially very complex population dynamics. Two components
of complexity are considered, the dimensionality of the attractor underlying the persistent dynamics, and
the presence of chaos. The dimensionality of real biological communities is unknown while there is great
controversy about the presence of chaos in population dynamics. The evidence for chaos, and changes in
the popularity of chaos among empirical biologists, is reviewed. Two new techniques developed in the
physical sciences, attractor reconstruction and the estimation of the correlation dimension, are described
and examples of their use in biology discussed. Although these techniques offer exciting new prospects for
investigating community dynamics, there are some major problems in using them in biology. These
problems include the length of biological time series, the ubiquity of noise, transient behaviour, Darwinian
evolution and problems in interpretation. These problems are discussed and it is concluded that the best
prospects of applying these techniques are using data collected in laboratory microcosms.

INTRODUCTION

Biological communities are normally composed of
large numbers of interacting species of plants, animals
and microorganisms. One consequence of the size of
natural communities, and also of the fact that
biological systems are subject to time-lags and have
spatial extent, is that the dynamics of biological
communities are potentially exceedingly complicated.
The question of the actual complexity of the dynamics
of natural communities is one of the major problems of
contemporary population ecology.

It is important to state immediately what is meant
by complexity because the word has many different
interpretations in the study of large systems. We discuss
here two elements of complexity. The persistent
behaviour of a system can be described by the
properties of the attractor underlying the dynamics.
The attractor can be visualized as a geometrical object
in a space of appropriate dimensionality determined by
the dimensionality of the attractor itself. We take as
one element of the complexity of community dynamics
the number of dimensions necessary to describe the
community attractor. This measure is related to the
number of separate equations that are required to
describe the persistent behaviour of the system: low
dimensionality implies few equations. (Note, however,
these equations are not normally the same as the
biological equations underpinning the dynamics of
individual species.) If the dynamics of the community
are chaotic, then the attractor has fractal geometry
and, normally, non-integer dimension. We take as our
second element of complexity the presence of chaos in
the dynamics of a community. The two elements of
complexity are potentially orthogonal: chaos may be
described by either high- or low-dimensional attractors.
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Any answer to the question of community com-
plexity will depend on the scale of investigation.
Consider a resource-consumer system where the re-
source renews itself on a very short timescale compared
to that of the dynamics of the consumer. A coarse
exploration of the dynamics of the system might just
consider the consumer, assuming that the resource
instantaneously reaches the equilibrium appropriate to
current consumer density. A more detailed exploration
of the dynamics might reveal dynamic behaviour
caused by short lags in the response of the resource to
changes in community abundance. Thus questions of
community complexity are inextricably linked to both
the scale of investigation and also to problems of model
abstraction: the size of the subset of species in the
community that need explicit consideration when

* describing the dynamics of a particular target species.

Throughout the late 1960s and 1970s, the dominant
research programme on the dynamics of communities
was based on the assumption that all members of the
community fluctuated about stable equilibrium popu-
lation densities. The behaviour of the system in the
neighbourhood of the equilibrium could then be
studied by linearization about the equilibrium value.
The community was characterized by the community
matrix, the elements of which, a;, described the
marginal influence of change in the abundance of
species ¢ on species j at equilibrium; the matrix
included intraspecific ~density-dependence (i =)
(Levins 1968). Study of linearized community models
failed to support the commonly held notion that
complex biological systems would automatically be
more stable (May 1973) and initiated a continuing
debate about whether an association between stability
and complexity might be found in biologically realistic
community matrices. Studies on the community matrix
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also examined the question of model abstraction
(MacArthur 1972; Levine 1976; Lawlor 1979;
Schaffer 1981).

The community matrix approach assumes both that
communities have stable equilibria and that the
communities exist sufficiently close to the equilibrium
that their dynamics may be encapsulated by lineariz-
ation. It has been known since the work of the founders
of population ecology that biological populations are
capable of persistent cyclic dynamics and there is little
disagreement among empirical biologists that at least
some species are cyclic. The discovery that natural
populations are potentially chaotic is much more
recent, and the question of the existence of chaos in
nature far from settled.

In the first section we review the evidence for chaos
as an empirical phenomenon in population biology.
We then describe a number of new techniques from
applied mathematics and the physical sciences that
potentially allow the resolution of the problem of the
complexity of natural systems. We describe their
application to biological data and particular problems
that arise in using these techniques in biology.

CHAOS IN ECOLOGICAL SYSTEMS

Chaos was not discovered by mathematicians but by
scientists such as meteorologists and biologists working
in other disciplines (Gleick 1988). In biology, chaos
was discovered through the study of single species
population models in discrete generations with self
regulation. As the nonlinearities in the self-regulation
term increase, the dynamic behaviour of the population
changes from a monotonic approach to a stable
equilibrium, to an oscillatory approach to equilibrium
and then to stable limit cycles which undergo period
doubling until chaos ensues. Embedded within the
chaotic region of parameter space are small regions
where low frequency limit cycles may be observed
though these, again through period doubling, merge
back into chaos as the strength of the self-regulation is
increased (May 1974, 1976; May & Oster 1976).
Chaos was also observed in time-lagged, differential
equation models of populations (May 1980) and in
systems of ordinary differential equation models,
though at least three species are required before chaos
can be observed (Gilpin 1979).

The possibility that biological populations have
chaotic dynamics prompted investigation to see
whether the nonlinearities in the dynamics of real
populations were sufficient to cause chaos. In what
became a very influential paper, Hassell ¢ al. (1976)
estimated the parameters of a simple single-species,
discrete-generation model capable of showing chaos,
by using 28 sets of insect population data. The
dynamics of the model was characterized by two
parameters, one representing fecundity and the second
representing the degree of nonlinearity in density
dependence. As the nonlinearity increased, the dy-
namics of the model followed the familiar course of
monotonic and oscillatory approaches to equilibrium,
limit cycles and chaos. With two exceptions, all the
data sets fell within the regions of stable equilibria. The
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two exceptions were the well-known outbreak pest, the
Colorado Beetle (Leptinotarsus quadrilineata), which fell
in the region of persistent cycles, and Nicholson’s
laboratory experiments with blowflies which fell within
the region of chaos. We shall discuss Nicholson’s
experiments in more detail below.

In recent years, this study has attracted much
criticism as being over simplistic. These criticisms are
often unfair as the authors were scrupulous in
cataloguing a long list of simplifications and assump-
tions inherent in their analysis. Perhaps the most
important of these simplifications is the assumption
that the dynamics of a species embedded in a complex
community can be abstracted by fitting the population
data to a simple single-species model. The problems of
this approach were clearly pointed out by Hassell ¢t al.
(1976) who noted that their procedure suggested that
the Larch Budworm (Zeiraphera diniana) should have
stable population dynamics whereas there is good
evidence that it shows approximately eight-year cycles
driven by interactions with its foodplant or a natural
enemy (Baltensweiler 1968).

A number of workers looked for evidence of chaos in
laboratory systems, again by fitting data to simple
population models. In particular, two studies on
Drosophila (Thomas et al. 1980; Mueller & Ayala 1981)
failed to find any evidence for chaos. The studies on
Drosophila prompted speculation that natural selection
might be responsible for the absence of chaotic
dynamics in nature. Thomas e al. suggested that alleles
that led to non-chaotic population dynamics might be
favoured through group selection. In contrast, Mueller
& Ayala showed that, at least under certain cir-
cumstances, a population showing non-equilibrium
population dynamics could be invaded by alleles that,
when common, promoted stable population dynamics.

By the early 1980s, a consensus had arisen among
experimental population biologists that chaos was
unlikely to be significant in natural populations. The
twin planks of this consensus were the failure to predict
chaotic dynamics by using models with parameters
estimated from real data, and the conjecture that
natural selection would promote non-chaotic dynam-
ics. However, we believe a sea-change occurred around
the middle of the decade and that in the past five years
there has been renewed interest in chaos among
empirical ecologists. There are perhaps two reasons for
this shift in opinion.

First, the view that chaos only occurs in the presence
of biologically unrealistic nonlinearities has been
challenged by a series of population models in which
chaos occurs with parameters well within the bounds of
biological realism. For example, Bellows & Hassell
(1988) predicted chaos by using a detailed age-
structured host-parasitoid model which they para-
meterized by using experimental data. Prout &
McChesney (1985) found that Drosophila females
developing in crowded cultures had reduced fecundity
as adults. This delayed density-dependence, which can
lead to chaotic dynamics, had not been appreciated by
earlier workers attempting to assess the likelihood of
chaos in laboratory fruitfly systems. These, and similar
results, indicated that chaos might become more likely
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as the number of interacting species, and the com-
plexity of the interaction, increased.

The second factor that has revitalized interest in
chaos comes not from biology but from applied
mathematics and the physical sciences. A series of new
techniques have been developed that allow the analysis
of time series data to estimate properties of the
attractors underlying dynamic systems. In the next
section we review two methods, attractor reconstruc-
tion and the estimation of correlation dimensions. The
responsibility for bringing these techniques to the
attention of biologists, and for pioneering their use on
biological data, is largely due to the tireless advocacy
of Schaffer and his colleagues (see, for example,
Schaffer 1984, 1985; Schaffer & Kot 1985, 1986). We
omit discussion of one very new technique, nonlinear
forecasting (Sugihara & May 19904), as this is the
subject of the next chapter (Sugihara & Grenfell, this
symposium).

ANALYSIS OF TIME SERIES
(a) Reconstructing attractors

Consider data collected on the population densities
of a predator and its prey with overlapping generations.
The raw data might consist of two parallel time series.
It is often more informative to plot the numbers of prey
at any particular time against the number of predators
at the same time, the resulting plot being known as a
phase plot drawn in phase space. Suppose that the
interaction between the predator and its prey results in
stable equilibria for both species. The phase plot now
shows the populations being attracted towards a point
in phase space that represents the stable equilibria. If
the results from a deterministic model of the interaction
was plotted in phase space, the trajectory would
approach the single equilibrium and remain there for
ever. For real data, the trajectory would be continually
displaced from the equilibrium point by stochastic
events and the phase plot would resemble a ball of wool
centred on the equilibrium value.

The point equilibrium in the above example is an
example of a dynamic attractor, in this case a point
attractor with zero dimension. Trajectories originating
in an area of phase space called the basin of the
attractor will flow towards the attractor and, in the
absence of perturbation, never leave it. Now suppose
that instead of a stable equilibrium, the predator—prey
system settles into some regular cycle. When plotted in
phase space, the trajectory will, after the transients
have died out, converge onto some roughly oval orbit.
The equilibrium dynamics is now determined by a
periodic attractor, a one-dimensional object plotted in
a two dimensional space. More complex periodic cycles
can arise by ‘period-doublings’, leading to figure-
of-eights and further twisted structures in phase
space.

The above attractors are the standard features of
Newtonian dynamics. Chaos is normally produced by
objects known as strange attractors. For overlapping
generations (ordinary differential equations), a chaotic
attractor can only exist in a three-dimensional phase
space. So, instead of a simple predator—prey inter-
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action, consider a three-trophic level interaction.t The
dynamics of the system may still be described by a
classical attractor, either a point attractor for a stable
equilibrium, a periodic attractor or even a two-
dimensional attractor. However, chaotic behaviour on
a strange attractor is now a possibility.

Figure 1 shows a strange attractor in three-
dimensional phase space. After any transients have
decayed, and again ignoring any stochastic perturb-
ation, all population trajectories originating in the
basin of attraction will come to lie on the surface of the
attractor. To see why the attractor earns the name
strange, consider a cloud of points lying close together
on the attractor (see also Schaffer (1984) for a similar
explanation). Now follow the fate of the points as they
move around the surface of the attractor. This process
is exactly analogous to trying to predict the future
population densities of several populations that at the
present moment have roughly similar population
levels. As the cloud of points moves around the surface
of the attractor, the cloud is first stretched on the
surface of the attractor and then folded over on to itself,
a process that happens once for every circuit of the
orbit. This continual stretching and folding means
that trajectories that started off in close proximity soon
become separated. More technically, nearby points
become homogenized on the surface of the attractor.
The practical consequence of this homogenization is
that populations that initially have similar population
densities quickly diverge in densities. One of the
hallmarks of chaos is extreme sensitivity to initial
conditions; present population densities can only be
used to predict future densities in the very short term.
The pattern of the decay of predictive power with time
is further discussed by Sugihara & Grenfell (this
symposium).

The attractor in figure 1 appears to be a twisted
diaphanous sheet suggesting a two-dimensional struc-
ture. However, the apparent two-dimensionality con-
ceals greater complexity. Each time the sheet is folded
back on itself, the two halves do not merge but retain
their structure such that the sheet consists of an infinite
number of separate layers: the ultimate millefeuille.
The object is in fact a fractal® if a cross section of the
flow is taken and examined under increasing magnific-
ation, greater and greater detail will be revealed and,
in addition, the details will be self repeating. More
specifically, the object is a type of Cantor Set, a set of
disconnected points that poses problems for traditional

T The restriction of chaotic attractors in continuous systems to
representation in three or more dimensions only partially precludes
chaotic dynamics in two-species or even one-species systems. A two-
species interaction will always have a zero or one dimensional
attractor (and a one-species interaction a zero-dimensional attractor)
unless extra degrees of freedom are supplied by the incorporation of
a time lag or a spatial component into the interaction. More
technically, the dimensionality of the system is equivalent to the
number of ordinary differential equations (ODEs) necessary for its
specification. A predator—prey interaction described by two
differential equations can only display stable or periodic dynamics.
However, a time-lagged differential equation, or a partial differential
equation (incorporating spatial coordinates) both potentially require
an infinite number ODEs for their specification. In practice, the
attractors underlying many time-lagged and partial differential
equations can be described in low-dimensional phase space.
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Figure 1. Schematic diagram of a strange attractor (the
Rossler attractor). The dotted circle represents a collection of
nearby trajectories, which as they orbit the attractor, are
initially stretched and then folded over on themselves. As a
result, nearby trajectories diverge and prediction is not
possible far into the future.

concepts of dimensionality (see Sugihara & May
(19906) for a recent discussion of dimensionality and
measure theory in biology). Such objects have frac-
tional dimension ; for example the object in figure 1 has
a dimension of between one and two. It looks like a
twisted sheet because it is nearly two-dimensional
while the additional complexity of the fractal structure
is represented by the fractional part of the dimension-
ality.

The rate of divergence of nearby trajectories on an
attractor is best measured using Lyapunov exponents.
Positive Lyapunov exponents indicate divergence in
some direction and negative exponents convergence; a
strange attractor must have at least one positive
Lyapunov exponent. For an essentially two-
dimensional attractor such as figure 1, Lyapunov
exponents are calculated, as an average over the
attractor, (1) in the direction of the flow, (2)
perpendicular to the flow in the plane of the attractor
and (3) perpendicular to both the flow and the plane of
the attractor. In the direction of flow, nearby points
are part of the same trajectory and so neither diverge
or converge: the Lyapunov exponent is zero. Nearby
trajectories in the plane of the attractor diverge (due to
stretching and folding) and are associated with positive
Lyapunov exponents while those perpendicular to the
plane of the attractor, and which are pulled down onto
the surface of the attractor, converge and are associated
with a negative Lyapunov exponent. A strange
attractor that exists in three-dimensional space must
have one positive and one negative Lyapunov ex-
ponent. Higher dimensional strange attractors may
have different combinations of positive and negative
Lyapunov exponents and this provides a partial
taxonomy of the attractors.

The characteristic shape of strange attractors sug-
gests a way of identifying chaos in time series. Plot the
time series in phase space and then examine the flow on
the attractor to look for stretching and folding.

Phil. Trans. R. Soc. Lond. B (1990)

However, to construct the phase plot one needs to
know the population densities for each species in the
system. A biologist typically does not have this data
and frequently does not even know the number of
species for which data is required. A solution to this
problem was provided by Packard et al. (1980) and
Takens (1981) who proved that the properties of the
attractor governing the system can be obtained from a
single time series by plotting trajectories in a phase
space constructed from lagged coordinates. For ex-
ample, a three-dimensional plot might be obtained by
giving each point s(¢) in the series the coordinates (x,
¥,z), wherex = s(t),y = s(t—7) and z = s(¢—27) where
7 is a suitably chosen time lag.

An immediate question is the number of dimensions
that are necessary in order to draw the attractor.
Takens (1981) and Packard et al. (1980) proved that
for a system of m equations, a sufficient number of
dimensions is 2m + 1. This provides rather cold comfort,
especially for high m. However, examination of physical
systems suggests that the dynamics of at least some
complex systems are governed by low dimensional
attractors. For example, a famous non-equilibrium
chemical reaction, the Belousov—Zhabotinskii reaction,
involving possibly over 25 chemical compounds, has
been shown to be described by an attractor with a
dimension near two (Roux et al. 1983). If complex
systems of interacting species also have low-
dimensional attractors, and if sufficient data is at hand,
plotting time series in lagged coordinate space should
reveal the shape of the attractor.

Supposing the structure of the attractor has been
convincingly recreated in phase space, further analysis
is possible by associating the dynamics on the attractor
with a one-dimensional return map. Return maps are
most familiar in biology as a means of analysing
populations with discrete generations. The size of the
population in generation ¢+ 1 is plotted against the size
of the population in generation ¢, the resulting line is
often called a Moran curve or Ricker curve. Return
maps are also useful for visualizing the onset of chaos in
populations with discrete generations (May & Oster
1976). Return maps can be generated from smooth
flows by sectioning the attractor in a plane per-
pendicular to the flow (in general, the intersection of a
multidimensional flow with a lower dimensional object
perpendicular to the flow is known as a Poincaré
section). In the case of a nearly two dimensional object
such as the attractor in figure 1, the Poincaré section is
taken using a plane and the intersection of the plane
with the attractor is a set of points that almost form a
line (figure 2). The next stage is actually to fit a line to
the series of points and to measure the distance of each
point along the line. Each time the population
completes a whole circuit of the attractor, it will
intersect the Poincaré section once. Thus each point on
the line is associated with a position in the time series.
A return map is constructed by plotting the position of
each point along the line against the point that
preceded it.

An examination of the one-dimensional return map
can reveal much about the behaviour of the whole
attractor. For example, suppose the return map is

[102]
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Figure 2. The intersection of a strange attractor, such as that in figure 1, and a plane perpendicular to the flow is a
Poincaré section. As explained in the text, the Poincaré section is approximately a straight line (a). Successive
intersections of the orbit with the section (numbered) can be used to construct a one-dimensional return map (b).

unimodal, an examination of the shape of the curve
will show whether the population will behave
chaotically and also reveal the way chaos arises through
a series of bifurcations leading to period doubling.
Note, an examination of a Ricker curve reveals exactly
the same thing for a single-species population in
discrete generations. In addition, the map can be used
to estimate Lyapunov exponents.

Finally, we point out that chaotic attractors arise in
a number of ways apart from through period doubling
(Schaffer et al. 1988). If interacting populations are
affected by some external cyclic influence, for example
daily or annual environmental influences, the attractor
may appear like the surface of a hollow doughnut or
torus. Here, instead of stretching or folding, clouds of
nearby points are stretched and then overlain on each
other as they move around the torus. If the attractor is
drawn in phase space (as above) and then a Poincaré
section taken, the intersection is a circle rather than a
line, a circular map rather than a one-dimensional
map is then studied. Various complications arise in the
presence of environmental forcing. For example, the
dynamics may become phase-locked : exhibiting fluctu-
ations of the same frequency as the environmental
fluctuations, or of a harmonic of that frequency.

(b) Estimating dimensions

Ideally, one would like to be able to measure the
number and magnitude of Lyapunov exponents di-
rectly from the data. This would provide information
both on the dimensionality of the attractor and also on
the presence of chaos. In practice, estimating
Lyapunov exponents is computationally difficult and
demanding of data, especially when the number of
Lyapunov exponents is unknown. An alternative to the
calculation of Lyapunov exponents is the estimation of
entropy measures which provide some of the same
information.

Phil. Trans. R. Soc. Lond. B (1990)

Consider an arbitrarily small box in the phase space
containing an attractor. In two dimensions, the box is
a square; in three dimensions a cube and in higher
dimensions a hypercube. An entropy or information
measure gives a value for the uncertainty of the future
behaviour of the system, based on the knowledge of the
box containing the system trajectory at the present
time.

The uncertainty can be partitioned into different
components corresponding to the dimensions of phase
space. For example, consider the strange attractor
shown in figure 1. Knowledge of the presence of the
trajectory at a particular point gives us different
information about the future position of the system (1)
in the direction perpendicular to the plane of the
attractor, no information, (2) along the flow of the
trajectory, perfect information, and (3) across the
fractal surface of the attractor, an intermediate amount
of information, the quality depending on the rate of
trajectory divergence. Adding up the partial dimen-
sions in each direction provides an overall information
dimension that is related to the fractal dimension of the
attractor (Grassberger 1986a).

The calculation of information measures poses many
of the same problems as the calculation of Lyapunov
exponents. However, it is usually simpler to calculate
an overall information dimension. A number of
different dimensions may be calculated depending on
the particular definition of entropy employed. A useful
family of entropies is the order-a generalized Renyi
information.

S9(e) = ——log [S45]. (1)

l—a
Where « is a parameter, and p, is the probability that
the " box of side € contains a trajectory, summed
over the non-empty boxes. As the p, are in a sense the
‘weights’ of each box, §“(¢) is related to the mass
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distribution of trajectories over the attractor, at
resolution €. The information dimensions D® are
calculated from

o 8@ (¢)
D@ = lim [*_log(l/e)]' (2)

The sequence D® is always a decreasing function for
increasing alpha. There is considerable confusion in
the terminology applied to these dimensions, which we
will try not to add to here. D is the fractal dimension,
as S@(e) is the log of the number of non-empty e-boxes.
D® (the limit as a—1) is confusingly called the
information dimension, as S (¢) reduces to the more
familiar Shannon information measure for entropy.
D™ is known as the correlation dimension or exponent,
and as Grassberger (19864, p. 305) says, ‘[it] is the
easiest generalized dimension to estimate, even if it is
not the most interesting’. Most practical calculations of
‘dimension’ of an attractor have involved D®, either
as a quantity in its own right, or as a lower bound to
the fractal dimension D©.

To calculate the correlation dimensions from ex-
perimental data, one embeds a time series in spaces of
different dimensions using lagged coordinates (see
previous section). Then, in each dimension, one
calculates the correlation integral, C(x), the proportion
of points that are separated by a distance less than a
threshold, x. When x is very small, all, or nearly all,
points will be separated by a distance greater than x
and the value of C(x) will be around zero. When x is
very large, all points will be separated by a distance less

>0
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than x and consequently C(x) = 1. Grassberger &
Procaccia (1983 a, b) showed that for intermediate
values of x,

C(x) = xlc, (3)
or equivalently

In (C(x)) = d.1In (x). (4)

The value of d. calculated using this method asymp-

totes at the value of the correlation dimension D® as
the embedding dimension increases.

The size of the interval on x for which equation (3)
holds (the scaling region) depends both on the
embedding dimension and on the noisiness of the data.
The scaling region decreases in size as the embedding
dimension increases setting an upper limit on the
dimensionality of the attractor that can be detected for
finite data sets. Noise also reduces the size of the scaling
region, typically by obscuring the correlation for low
values of x.

We show the calculation of correlation dimensions
by using an example from a model with chaotic
behaviour. Hochberg e al. (1990) studied the three-
species interaction between an insect and its specific
parasitoid and pathogen. The pathogen is contracted
by eating infected food and also exists in a protected
stage that allows persistence of the disease in the
temporary absence of the host. Parasitoid attack is
independent of the presence of the disease and may be
either random or clumped. For different parameter
values, host-pathogen, host-parasitoid or three species
interactions may be stable. The model is phrased as a

"1 (b)

s .|||I..| ll“ll L)

Population size

50 100 150 200
Generation

Population size
Y

1
100

Generation

Figure 3. An example of host—parasitoid—pathogen dynamics from a model of Hochberg, Hassell & May (1990). All
parameters are constant except host fecundity. Unbroken line, the host; dashed line, the parasitoid ; dotted line, the
pathogen. (a) Fecundity = 6; (b) fecundity = 8; (¢) fecundity = 10; (d) fecundity = 12.
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system of three difference equations with a time step
equal to the host and parasitoid generation times. Each
host generation, a pathogen epidemic occurs that
determines the number of infectious particles in the
next generation.

The dynamic behaviour of the system is strongly
influenced by host fecundity. For one particular
parameter set, we chart the change in system dynamics
as host fecundity increases from 2 to 12. When the
fecundity is two, a stable three species equilibrium is
found. As fecundity increases stable limit cycles are
found which increase in period until the system
becomes chaotic. As fecundity is further increased
within the chaotic region, the apparent ‘randomness’
of the population trajectories also increases (figure 3).
At a fecundity of about 10, the parasitoid becomes
extinct though the remaining host-pathogen inter-
action is also chaotic.

We ran the model for 500 generations, which
appeared to eliminate transient behaviour and then
used the results for another 500 generations to estimate
the correlation dimension of the attractor in the
chaotic region. Stable equilibria (zero-dimensional)
and periodic behaviour (one-dimensional) give way to
dynamic behaviour governed by attractors of between
1 and 1.5 (figure 4). When the parasitoid drops out of
the interaction, the correlation dimension falls from
about 1.4 to 1.1 though the non-integer dimensionality
confirms that the interaction is still chaotic.

EXAMPLES OF USE
(a) Laboratory data: Nicholson’s blowflies

During the 1950s the Australian entomologist A. J.
Nicholson performed a series of cage experiments using
populations of the sheep blowfly Lucilia cuprina (Wied.),
under a variety of food-supply regimes, to investigate
the process of density dependence in population
dynamics (Nicholson 1954, 1957). In one of these
experiments, Nicholson (1957) produced a striking
pattern of variation in adult blowfly numbers with
time (Figure 5), starting with irregular cyclic be-
haviour, and changing after about one year to a
pattern of large and erratic fluctuations superimposed
upon an increasing average population size.

There has been much debate on the population
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Figure 4. The dimension of the attractor underlying the
host—parasitoid—pathogen dynamics illustrated in figure 3 for
different values of the fecundity of the host.
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Figure 5. Changes in blowfly numbers in Nicholson’s long-
term laboratory cage experiment.

dynamics underlying Nicholson’s results. As mentioned
above, Hassall et al. (1976) suggested that the dynamics
were chaotic after using the data to estimate the
parameters of a single-species population model in
discrete generations. More detailed stage-structured
models have been fitted to the same experimental data
by a number of groups (Oster & Takahashi 1974;
Gurney et al. 1980; Readshaw & Cuff 1980; Brillinger
et al. 1980; Stokes et al. 1988). There is general
agreement that at least the earlier part of the data can
be explained by perturbed limit cycles (rather than
quasi-cycles, see below). However, there is disagree-
ment about whether the perturbed limit cycles might
better be explained by a model with a chaotic
component, and whether the data set becomes chaotic
latterly.

The results of the estimated correlation dimension
for this data set are shown in figure 6 (Blythe & Stokes
1988). The correlation dimension increases with the
embedding dimension ; though there is some suggestion
that the correlation dimension is beginning to stabilize
at a value of around 5, there is only weak evidence of
alow-dimensional attractor. Two possible explanations
for the poor performance of the technique are the
relatively small data set, and the possibility that the
system was subject to natural selection over the course
of the experiment. We return to this last point below.

correlation dimension
w
!

embedding dimension

Figure 6. Estimating the correlation dimension for the
blowfly population in Figure 5. The graph shows the
estimated value of the correlation dimension, 4,, as a function
of the embedding dimension.
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(b) Field data: lynx and measles attractors

The technique of reconstructing an attractor from a
lagged time series, followed by inspection of the form of
the attractor for the presence of stretching and folding,
has been applied to data on the Canadian Lynx and on
measles epidemics by Schaffer (1984) and Schaffer &
Kot (1985), respectively. In both cases the time series
are strongly cyclic, in the case of the lynx with a period
of approximately 9-10 years and in the case of the
measles epidemics with a period of 2-3 years.

The data on lynx populations was obtained in-
directly from the returns of fur trappers in the
Canadian arctic between 1735 and 1934. This famous
data set was first studied by Elton & Nicholson (1942)
and by many subsequent workers. Schaffer analysed
data from 1821 to 1913, a period of sustained 9-10 year
oscillations. By using a time lag of three years and an
embedding dimension of three, the attractor appeared
as an essentially two-dimensional sheet, twisted into a
cone. Poincaré sections were nearly one-dimensional
and revealed some evidence of stretching and folding.
The sections appeared to be describable by a unimodal
map though the data was not of sufficient quality for
the dynamic properties of the whole system to. be
precisely reconstructed from the map. Schaffer con-
cludes that the most likely explanations for the data are
that they are twice periodic or slightly chaotic, the
chaos possibly caused by an interaction between an
underlying twice-periodic orbit and noise.

Data on measles was obtained from medical health
records from New York & Baltimore spanning the
period 1928 until the advent of vaccination in 1963.
Explanations for the presence of recurrent measles
epidemics involve seasonal differences in the rate of
transmission or random events leading to temporary
extinction of the disease (see, for example, May &
Anderson 1979). Schaffer & Kot reconstructed the
attractor in three dimensions using a three month lag.
Again the attractor appeared cone-like; essentially a
two-dimensional object in three-dimensional space.
Poincaré sectioning suggested stretching and folding
while the properties of a one-dimensional return map
constructed from the sections also suggested chaos (for
example, a positive Lyapunov exponent was calculated
from the return map). Finally, the correlation di-
mension was non-integer (fractal), again suggesting
chaos. Sugihara & May (1990a; see also Sugihara &

Grenfell, this symposium) also analyse this data set and

conclude that there is evidence of chaos.

(¢) Field data: dimension of plankton dynamics

We have attempted to apply the correlation di-
mension technique to a classic long-term data set, the
Continuous Plankton Record (H. C. J. Godfray et al.
unpublished data). Since 1948, regular monthly
surveys of plankton have been carried out by using
continuous plankton recorders towed behind merchant
ships and weather ships in the North Sea and Atlantic
(Colebrook 1960, 1975). Plankton are collected at a
standard depth of 10 m and identified to as low a
taxonomic level as possible. Each data point represents
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Figure 7. An attempt to estimate d, from plankton data
collected as part of the Continuous Plankton Record (the
copepod Calanus finmarchicus from area C2 in the North Sea,
see  Colebrook, 1960). The slope of the graph of the
correlation integral plotted against the test distance fails to
asymptote as the embedding dimension increases.

the estimated density for a particular group of plankton
in an area of sea.

From the large number of possible data sets, we
selected 20 time series using as criteria those data sets
with the smallest numbers of missing values and real
zeros. When missing values occurred (not more than 10
in any data set), we estimated replacement values
using linear interpolation. The data sets we used were
chiefly groupings of copepods and euphausiaceans
from the southern part of the North Sea (see H. C. J.
Godfray et al. (unpublished data) for full details of data
and localities). There is evidence of a long-term decline
in the abundance of plankton in the area (see, for
example, Colebrook 1978) and we have used the
logarithm of the monthly differences as our raw data.
In embedding the time series using lagged coordinates,
we used a lag of seven months (for some data sets we
explored other lags though our results were identical).
Initially, we explored the data sets using traditional
time series analysis. The majority (though not all) of
the data sets showed annual cycles while four-yearly
and four-monthly cycles were observed in some sets.

An example of the relation between the correlation
integral and the test distance for the plankton data is
shown in figure 7. The correlation integral increases
with the test distance and there is no scaling interval
that allows the estimation of the correlation dimension
for any but the lowest embedding dimension. This
result is typical of all the 20 data sets we explored. Thus
there may be no low-dimensional attractor underlying
the dynamics of these North Sea plankton. However, it
is also possible that even the (relatively) outstanding
quality of data of the Continuous Plankton Record is
insufficient to allow the application of this technique.

BIOLOGICAL PROBLEMS

The techniques discussed above were chiefly de-
veloped with applications in the physical sciences in
mind. Using these techniques in the biological sciences
presents a number of problems, some peculiar to, and
some exacerbated by, the need to work with living
organisms.
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(a) Size of data base

Attempts to reconstruct the shape of attractors and
to estimate correlation dimensions demand long time
series of data. Very few biological data sets are
sufficiently long for these purposes. The exact length
requirement will obviously depend on the quality of
the data though little information about the structure
of a strange attractor is likely to be obtained without
information on 20 orbits, at the very least.

The lack of long term data on long-lived plants and
animals is not surprising; few biologists embark on
studies destined to occupy a substantial fraction of their
own lives. It is perhaps more surprising that there is so
little data on short-lived animals such as plankton that
can be easily cultured in the laboratory for many
generations.

The problem of small data sets is, of course, not
unique to the biological sciences. The search for a
global climatic attractor provides a cautionary tale
about the dangers of over-interpreting short data sets.
It has been suggested that the ratio of oxygen isotopes
in cores from the seabed are correlated with climatic
conditions at the time of sediment deposition. Nicolis &
Nicolis (1984) examined a time-series of 184 oxygen-
isotope data points. Unfortunately, the 184 data points
were unevenly spaced over time, which presents
obvious difficulties if the data set is to be embedded by
using lagged coordinates. The solution adopted by
Nicolis & Nicolis was to interpolate the data, increasing
the length to just under 500 data points. Application of
the Grassberger & Procaccia algorithm suggested an
attractor with a dimension of 3.1. However, as was
pointed out by Grassberger (19865; see also Schaffer
et al. (1988)), the process of interpolation introduces
spurious correlation between data points and arte-
factually low estimates of attractor dimensionality.
Unfortunately, the length of the data set is too short
either to make a strong positive or negative statement
about a potential attractor.

(b) Noise

Biologically data is typically much more noisy than
data from the physical sciences and this can obfuscate
underlying deterministic patterns. The effect of noise
can be explored in model systems by artificially
generating variability in parameters and observing the
consequences on the detection of chaos and estimation
of dimensionality (see, for example, Schaffer 1984).
Most such experiments have involved uncorrelated, or
white noise. Typically, longer data sets are required to
overcome moderate levels of noise. A more serious
problem, that has received less attention, is correlated
or coloured noise. This is a greater problem as it results
in correlation between data points that may influence
the estimation of dimensionality.

Several workers have pointed out that moderate
amounts of noise may actually help reveal underlying
dynamics (Nisbet & Gurney 1982; Schaffer 1985).
Consider a deterministic system whose dynamics are
described by a unimodal return map. If the system has
a point attractor then the addition of noise will result
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in a cloud of points about the stable point. However, if
the system has a periodic solution then the addition of
noise will lead to the system wondering over the surface
of the map, revealing its structure in more detail. Of
course, a chaotic system reveals its own map and extra
noise is unlikely to increase the resolution.

Periodic attractors can also be transformed into
strange attractors by the addition of noise. For
example, the logistic map is said to become chaotic
when the fecundity exceeds a certain value. In fact, the
chaotic region contains an infinite number of periodic
solutions. However, even the presence of very small
amounts of noise results in most of the region being
chaotic.

(¢) Transients

The structure of an attractor can only be recon-
structed if the trajectory of the system through phase
space lies on the attractor. If the study is initiated when
the system is some way from the attractor, the
estimation of attractor properties will be impeded by
the presence of transients. This problem is of course
present in many dynamical experiments, but it may be
particularly acute in population dynamics: laboratory
populations and communities are frequently set up
with little knowledge of the consequences of different
starting conditions.

Blythe & Stokes (1988) examined some of the
consequences of initial transients using a second-order
ordinary differential equation,

d%/df+2bdx/dt+w?x =0, xf_y=1,
dx/dt|,_, = 0. (5)

This has a stable equilibrium at x = 0, approached via
damped oscillations when ® > 4* (figure 8a). The
system thus has a point attractor with zero dimensions.
However, if the correlation dimension technique is
applied to data collected during the period of os-
cillatory transience, a dimension of about 0.9 is
estimated. Thus an uncritical reading of the results
would suggest a periodic attractor rather than a point
attractor, possibly with a slight chaotic component.

When analysing data from the field, or from long-
term laboratory experiments, any initial transients
may be expected to be absent or at least to die away.
However, a system that displays an oscillatory ap-
proach to equilibrium, and that is continually subject
to external stochastic perturbations, may show a
mixture of apparently cyclic and noisy dynamic
behaviour that appears superficially very similar to
chaos. Such behaviour has been called quasi-cycles by
Nisbet et al. (1977) and we digress slightly to discuss
how quasi-cycles may be characterized (see also Nisbet
& Gurney (1982)).

Quasi-cycles can be described by a quantity the
coherence number 7, the number of cycles taken for
the amplitude of the oscillation to decay by a factor e™*.
The coherence number equals w/(27u) where w is the
angular frequency of the oscillatory transients which
decay at a rate proportional to e™. Quasi-cycles are
typically characterized by bursts of approximately 3z,
rough cycles, interspersed by noise. Quasi-cycles can be
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Figure 8. (a) The oscillatory approach (to a stable equilibrium) of equation (5); (4) quasi-cycles around a stable
equilibrium of equation (7). In both cases w = 27.

generated by random (white) noise when the transfer
function T(f) of the system has a sharp peak. The
transfer function relates the amplitude of an external
perturbation, at frequency f, to the consequent
fluctuations at the same frequency in the population
under study. If a population has a ‘flat’ transfer
function then all external perturbations are faithfully
mirrored by the population. If the transfer function has
a sharp peak, say at frequency f, then only per-
turbations of that frequency cause oscillations in the
population. White noise contains fluctuations of all
frequencies, including f and is thus able to cause well-
characterized cycles in populations with a sharp
transfer function. In general, if the range of frequencies
present in the external noise is described by the spectral
density s,, the equivalent variance in the population
fluctuations is

LR ©

The quantity within the integral is the modulus of the
transfer function (in general a complex number) and
represents the ratio of the amplitude of the environ-
mental fluctuation and the response of the population.

To explore the influence of quasi-cycles on the
calculation of dimensions, consider first a non-hom-
ogenous extension of equation (5)

d2x/d2+2bdx/dt+ 0’ = y(1), xlo=1,
dx/dt|,_y= 0. (7)

Where y(t) is a source of Gaussian random noise with
zero mean and spectral density s,,. Solutions of equation
(7) exhibit coherent quasi-cycles (figure 84). Blythe &
Stokes (1988) calculated the correlation dimension for
such a trajectory, embedding the time series in 2-11-
dimensional space. No convergent scaling regions were
found and so no estimate of attractor dimensionality
was possible. Thus the quasi-cycles obscure the
presence of a simple point attractor though the
correlation dimension distinguishes quasi-cycles from,
at least, low-dimensional chaos.

It may easily be shown that the variance in the
fluctuations of equation (7), o2, is

ol x5, /200 (8)

Phil, Trans. R. Soc. Lond. B {1990)

As @ = 27 in the example in figure 8, we would expect
to need a large spectral density s, in order to produce
significant variance in the population fluctuations.
Also, for that example, n, & 20, so that bursts of up to
60 reasonably well-formed cycles would be expected
during the coherent phase.

A second, and biologically more plausible, example
of quasi-cycles can be obtained from the time-delayed
logistic equation with a randomly perturbed par-
ameter. Here, the coherence number is lower and the -
sensitivity of population variance to noise spectral
density somewhat greater. In scaled (dimensionless)
form with X the population variable, the time-delayed
logistic is

dX,

_dz“t =aX[1-(1+y(0) Xiul, xheo=1, 9)

where a is scaled fecundity. The scaled carrying
capacity = 1 and we assume is subject to environ-
mental perturbation described by y(f) with mean =0
and variance s,. When y(¢) = 0 (S, = 0), equation (9)
has a stable point for @ < 37, and regular cycles (period
initially ~ 4) if @ > 7. We assume that the population
is at carrying capacity as an arbitrary initial history.

The quasi-cycle behaviour of equation (7) was
examined by Nisbet ¢/ al. (1977) and Nisbet & Gurney
(1982). If we choose a value of a2 = 1.4, then we have
n, =~ 2.8, and a sharp peak in the transfer function at
scaled angular frequency 1.70, so that we might expect
up to 8 or 9 rough cycles per coherent burst. The
relation between s, and o2 (equation 4) is approxi-
mately linear, with a proportionality constant of order
unity (Nisbet ¢t al. 1977), so that we may expect much
less regularity in the population fluctuations obtained
from equation (7) in comparison with equation (5)
(figure 9). The pattern of irregular quasi-cyclic bursts
is not atypical of population data, and it is certainly
not clear, upon inspection only, whether we are seeing
chaos, noisy limit cycles, or quasi-cycles.

We attempted to estimate the attractor dimension of
the data in figure 9 by embedding the time series in
embedding dimensions of 2-8 (we used a longer data
run than that illustrated in the figure). We found no
evidence for the gradient reaching a limiting value as
the embedding dimension increases. If the dimension
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Figure 9. The dynamics of the time-delayed logistic equation
with stochastic variation in carrying capacity (equation 9),
a = 1.4, spectral density = 1.5.

were all the information available to us, we would be
inclined to regard the data in figure 9 as essentially
random. But spectral analysis of the data reveals a very
strong periodic elements, clearly contradicting the
notion of a noise process.

In conclusion, the calculation of correlation dimen-
sions is fraught with difficulty in the presence of noise
and transients, sometimes giving false positives, as in
the case of a simple transient from initial conditions,
and sometimes giving false negatives, as in the case of
coherent quasi-cycles.

(d) Evolution

One view of organic evolution is that animals and
plants spend most of their time at evolutionary
equilibrium. From time to time they are confronted by
new challenges, either from the biotic or abiotic
environments, which cause relatively fast shifts to new
equilibria through the action of natural selection. The
alternative view is symbolized by van Valen’s Red
Queen Hypothesis (1973). Just as Lewis Carroll’s Red
Queen had to keep running to remain still, so all
organisms have to continually evolve in the face of ever
changing selection pressures. In van Valen’s view,
selection resulting in change in one organism in a
community alters the selection experienced by other
organisms, which in turn feeds back to cause more
change in the first organism.

A more concrete example of possible red queen
evolution has been suggested by Hamilton (1980) to
occur between parasites and their hosts. If certain host
genotypes are more susceptible to certain parasite
genotypes then, under certain circumstances frequency
dependent selection can lead to persistent cycles in host
and parasite gene frequencies. The maintenance of
such cycles requires continual, often quite heavy,
mortality from disease in the host. As was pointed out
by May & Anderson (1983), the genetic interactions
between host and parasite will have important conse-
quences on the population dynamics.

How might evolution affect the detection of dimen-
sionality and chaos? If individuals from wild popul-
ations are introduced into laboratory microcosms, the
novel conditions they experience may lead to selection
on life history parameters (Blythe & Stokes 1988). As
a result, the dynamic properties of the system may
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change. The Nicholson blowfly experiments (see
above) are a plausible example of evolution occurring
over the course of a laboratory experiment. In a sense,
this form of evolutionary change is analogous to a
transient as after the population has adapted to the
new conditions in the laboratory, the dynamic be-
haviour should be unaffected by evolution. However,
when interpreting results from the asymptoting dy-
namics, it must be borne in mind that the observed
dynamics in the laboratory may differ from those in the
field. It is also possible that the invariable simplicity of
laboratory ecosystems in comparison with their natural
counterparts might lead to consistent biases in the
estimation of such properties as dimensionality.

Red Queen evolution may have a number of
consequences for the population dynamics of a system.
First, if the course of evolution was relatively slow
compared to the length of the time series available for
analysis, the form of an attractor may change over the
course of the sampling period. If the shape of the
attractor was reconstructed by embedding, then early
and later trajectories might be physically separated in
phase space. Similarly, such changes in the properties
of an attractor would complicate estimation of
dimensionality. A more interesting consequence occurs
if the rate of evolution is relatively fast compared to the
length of the time series. In these circumstances,
population densities and gene frequencies may change
on similar time scales and a reconstruction of the
dynamics of the system would incorporate both
population and genetic variables. The dimensionality
of the system would be influenced by the degree of
independence of population dynamics and population
genetics.

(e) Interpretation

The attempts both to reconstruct attractors, and to
estimate correlation dimensions, involve a degree of
subjective pattern recognition. For example, the
identification of regions of stretching and folding has to
be made by eye. Taking Poincaré sections and
estimating one-dimensional return maps increases
objectivity though fitting curves to one-dimensional
return maps with few data points results in large
standard errors on parameters and consequent am-
biguity in predicted dynamics. Similarly, when es-
timating correlation dimensions, the size of the scaling
region has to be chosen subjectively.

Biologists, brought up on a diet of strict hypothesis
testing, are typically more suspicious than physical
scientists of conclusions drawn from the visual in-
spection of geometrical objects. Thus Berryman &
Millstein (1989), unfairly in our view, dismiss the
attempts of Schaffer and his colleagues to reconstruct
attractors as providing evidence for chaos that is ‘more
illusory than scientific’: the case for at least a chaotic
measles attractor is now very strong (Schaffer 1985;
Sugihara & May 19904). In part, the problems of
subjectivity can only be resolved through the use of
better data. However, we also believe that biologists
should adopt a more robust approach to scientific
hypothesis testing.
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CONCLUSIONS

The new techniques from applied mathematics and
the physical sciences offer very exciting prospects of
new approaches to some of the most interesting
questions in population and community ecology.
Nevertheless, there are formidable problems in ap-
plying these techniques in ecology: very few data sets
are of sufficient quality and length to be analysed in
this way. Further effort is needed by applied mathe-
maticians to develop techniques better suited to the
biological, as opposed to the physical sciences.

We believe that the best prospects of investigating
community dynamics in biology lie with the study of
experimental microcosms of short-lived organisms, for
example, freshwater zoo-plankton. Obviously, the
study of experimental communities is second-best to
the study of natural communities. However, if it is not
possible to understand the dynamics of a simplified
community, under controlled conditions, there is very
little prospect of understanding the dynamics of real
communities. We strongly agree with a recent remark
of Kareiva’s (1989) ‘ecologists gave up bottle experi-
ments too soon’.
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Discussion

M. WiLLiamsoN (Depariment of Biology, University of York,
U.K.). When testing time series of biotic entities for chaos is
there not a possibly confusing factor? It is one of the triumphs
of nonlinear science to show that there is chaos in the physical
environment on a variety of timescales from days (as in the
weather) to millions of years (as in planetary orbits). If Dr
Godfray shows chaos in a biological time series, may he not
merely be showing chaos in the physical environment
affecting the biological entity? Is he not trying to determine
whether there is chaos in the population dynamics of that
entity?
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H. C. J. Goprray. One of the key issues here is the relative
scales of the physical and biological processes. When
experimentally studying biological populations, one is not
normally concerned with climatic attractors or planetary
motion with characteristic periods of very many generations.
However, meteorological and tidal patterns may be of a scale
likely to influence experimental results. Normally, it is far
easier to measure the physical rather than the biological
dynamics and so identification of the ‘driving chaos’ may be
far simpler than the identification of chaos in the population
dynamics. Of course, microcosm studies have the advantage
of being able to control for external physical processes.

S. P. BLytHE. Additional insight into this problem may be
gained by modelling: consideration of forcing functions may
be a good way forward in this area, as the study of
complicated dynamics in these circumstances dates back to
Cartwright (1948, Journal of the Institute of Electrical Engineers
95, pp. 223) and many results are available. Note also that a
chaotic forcing term is not needed to induce chaos: a periodic
function will often do the trick (see, for example, Marcus
et al. (1984), FEBS Letters 172, pp. 235). There is much scope
(and need) for analysis in this area.

J- N. PErRRY (Institute of Arable Crops Research, Statistics
Department, Rothamsted Experimental Station, Harpendon, Herts.
U.K.). Dr Godfray refers to the study of Hassell et al. (1976)
where an intrinsic growth parameter, A, and a density-
dependence parameter, §, were estimated from data. Since A
is calculated after allowing for all density-independent
mortality, and since we now know that density dependence
may often be present but undetected (and therefore
underestimated), these estimates of A may be biased
downwards, i.e. underestimates. However, A and g are
clearly positively correlated ; hence calculated g values may
consequently also be underestimates. Therefore some data
points in the figure might require amendment by a shift away
from the origin, towards the chaotic region. I wonder to what
extent some populations would exhibit chaos under Hassell
et al.’s model, were all the density-dependence allowed for?

H. C. J. Goprray. This is an interesting additional caveat to
the Hassell et al. study. However, my feeling is that 15 years
on from this study we need more sophisticated techniques for
detecting chaos: either more realistic underlying models, or
techniques that do not make a priori assumptions about
underlying mechanisms.
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